The Cost

Cost and Inflation

When you are planning your investment strategy, remember that investments that do not keep you ahead of inflation are not good investments for funding college costs. Following is a table with inflation factors that will help you determine what the cost of college will be when your child is ready to go to school. To use the table:

  1. Pick an inflation rate for college costs.
  2. Determine how many years until school starts.
  3. Find the appropriate factor from the table.
  4. Multiply that factor by the cost of college in today's dollars (either select a particular college; or see the section Two-Year or Four-Year School and use the average cost there).
  5. The result is the inflated cost you will have to pay.

Calculate the Impact of Inflation on College Costs

Years Until
School Starts

2% Inflation

4% Inflation

6% Inflation

8% Inflation

10% Inflation

1

1.02

1.04

1.06

1.08

1.10

2

1.04

1.08

1.12

1.17

1.21

3

1.06

1.12

1.19

1.26

1.33

4

1.08

1.17

1.26

1.36

1.46

5

1.10

1.22

1.34

1.47

1.61

6

1.13

1.27

1.42

1.59

1.77

7

1.15

1.32

1.50

1.71

1.95

8

1.17

1.37

1.59

1.85

2.14

9

1.20

1.42

1.69

2.00

2.36

10

1.22

1.48

1.79

2.16

2.59

11

1.24

1.54

1.90

2.33

2.85

12

1.27

1.60

2.01

2.52

3.14

13

1.29

1.67

2.13

2.72

3.45

14

1.32

1.73

2.26

2.94

3.80

15

1.35

1.80

2.40

3.17

4.18

16

1.37

1.87

2.54

3.43

4.59

17

1.40

1.95

2.69

3.70

5.05

18

1.43

2.03

2.85

4.00

5.56

19

1.46

2.11

3.03

4.32

6.12

20

1.49

2.19

3.21

4.66

6.73

21

1.52

2.28

3.40

5.03

7.40

Review the following example. Suppose you've decided on a public school at a cost of $20,000 in today's dollars. You assume college costs will increase by 6% per year. Your child is ten years old, so school is eight years away. Go to the 6% Inflation column, follow it down to the row for 8 Years Until School Starts. The factor is 1.59. Multiply the cost of school in today's dollars ($20,000) times the factor (1.59) to get the expected cost of school eight years from now, which in this example is $31,800.

Now suppose that same child plans to transfer from a public school to a private school (at a cost of $40,000 in today's dollars) for their junior and senior years. Go to the 6% Inflation column, follow it down to the row for 10 Years Until School Starts—that's when the junior year begins. The factor is 1.79.

Multiply the cost of school ($40,000) times the factor (1.79) to get the expected cost of school ten years from now, which in this example is $71,600.

The total cost of the four years is $213,200 as follows:

Today's Cost

Times

Inflation Factor

Equals

Future Cost

$20,000

X

1.59

=

$31,800

$20,000

X

1.69

=

$33,800

$40,000

X

1.79

=

$71,600

$40,000

X

1.90

=

$76,000

TOTAL

$213,200


Use the Inflation Worksheet to calculate the impact of inflation on your child's college costs.

Share Article:
Add to GooglePlus

Securities and Investment Advisory Services are offered through LPL Financial, a Registered Investment Advisor, member FINRA/SIPC. Insurance products are offered through LPL Financial or its licensed affiliates. Heartland Planning Associates is a trade name of Heartland Bank. Heartland Bank and Heartland Planning Associates are not a registered broker/dealers and are not affiliated with LPL Financial.  The investment products sold through LPL Financial are not insured Heartland Bank deposits and are not FDIC insured.  These products are not obligations of Heartland Bank and are not endorsed, recommended or guaranteed by Heartland Bank or any other government agency. The value of the investment may fluctuate, the return on the investment is not guaranteed, and loss of principal is possible.  The LPL Financial representatives associated with this website may discuss and/or transact securities business only with residents of the following state: Ohio. Check the background of investment professionals associated with this site on FINRA's BrokerCheck.

Not Insured by FDIC or Any Other
Government Agency
Not Bank
Guaranteed
Not Bank Deposits or
Obligations
May Lose
Value